skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simon, Patrice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MXenes are among the fastest‐growing families of 2D materials, promising for high‐rate, high‐energy energy storage applications due to their high electronic and ionic conductivity, large surface area, and reversible surface redox ability. The Ti3C2TxMXene shows a capacitive charge storage mechanism in diluted aqueous LiCl electrolyte while achieving abnormal redox‐like features in the water‐in‐salt LiCl electrolyte. Herein, variousoperandotechniques are used to investigate changes in resistance, mass, and electrode thickness of Ti3C2Txduring cycling in salt‐in‐water and water‐in‐salt LiCl electrolytes. Significant resistance variations due to interlayer space changes are recorded in the water‐in‐salt LiCl electrolyte. In both electrolytes, conductivity variations attributed to charge carrier density changes or varied inter‐sheet electron hopping barriers are detected in the capacitive areas, where no thickness variations are observed. Overall, combining thoseoperandotechniques enhances the understanding of charge storage mechanisms and facilitates the development of MXene‐based energy storage devices. 
    more » « less